

Differentiation in n -d

In 1-d we have $f : U \rightarrow \mathbb{R}$ with $U \subseteq \mathbb{R}$ open. Then in n -d a function is a map $f : U \rightarrow \mathbb{R}$ with $U \subseteq \mathbb{R}^n$ open and a map is a function $f : U \rightarrow \mathbb{R}^n$ with $U \subseteq \mathbb{R}^n$ open.

1. Remark: A map $U \rightarrow \mathbb{R}^n$ with $U \subseteq \mathbb{R}^n$ open is uniquely determined by $f_1, f_2, \dots, f_n : U \rightarrow \mathbb{R}$ by looking at coordinates of \mathbb{R}^n .

1.1. Examples:

1. $f : \mathbb{R} \rightarrow \mathbb{R}^2$ with $t \mapsto (\cos t, \sin t)$

In this example, $f_1(t) = \cos t$, $f_2(t) = \sin t$.

2. $f : \mathbb{R}^2 \rightarrow \mathbb{R}$

Suppose $f(x, y) = e^{\sin x \cdot \cos^2 x} + x + y$. We cannot write an x function and a y function since we only have one output.

2. Generalising 1-d

We have a limiting slope interpretation. But consider the case of $f : \mathbb{R}^n \rightarrow \mathbb{R}$, here we have:

$$f'(x_0) = \lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \frac{\text{a number}}{n\text{-tuple}} = \text{undefined}$$

To remedy this we may instead take the limit (wlog consider 2-d) $\lim_{(x,y) \rightarrow (x_0,y_0)}$ but this doesn't work (consider $f(x, y) = 2x + y$). Thus we generalise not the limiting slope interpretation but instead the linear approximation interpretation.

2.2. Examples:

1. $f(x) = (x + 1)^3$ at $x = 0$

We expand $(x + 1)^3 = x^3 + 3x^2 + 3x + 1$. Here the first two terms are our error term and the last two are our linear approximation $L(x)$. Notice then that $\lim_{x \rightarrow 0} \frac{f(x) - L(x)}{x} = 0$.

2. $f(x) = e^x$ at $x = 0$

We expand $e^x = 1 + x + \frac{x^2}{2} + \dots$, here $L(x) = 1 + x$.

3. Remark: In general the linear approximation is the function of the form $C + a_1x_1 + a_2x_2 + \cdots + a_nx_n$.

4. Definition: Let $f : U \rightarrow \mathbb{R}^m$ with $U \subseteq \mathbb{R}^n$ open. We say f is differentiable at $x_0 \in U$ if there exists a linear map $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ s.t.

$$\lim_{x \rightarrow x_0} \frac{\|f(x) - f(x_0) - T(x - x_0)\|}{\|x - x_0\|} = 0.$$

If the limit exists, we say the differential matrix $Df(x_0) = T$ is a linear map.

5. Remark: Recall that if $m = 1$ we say $T = [a_1, \dots, a_n]$ is a linear map $\mathbb{R}^n \rightarrow \mathbb{R}$.